

NAVAL Postgraduate School

Optimizing a System of Threshold-based Sensors

with Application to Biosurveillance

Ronald D. Fricker, Jr.

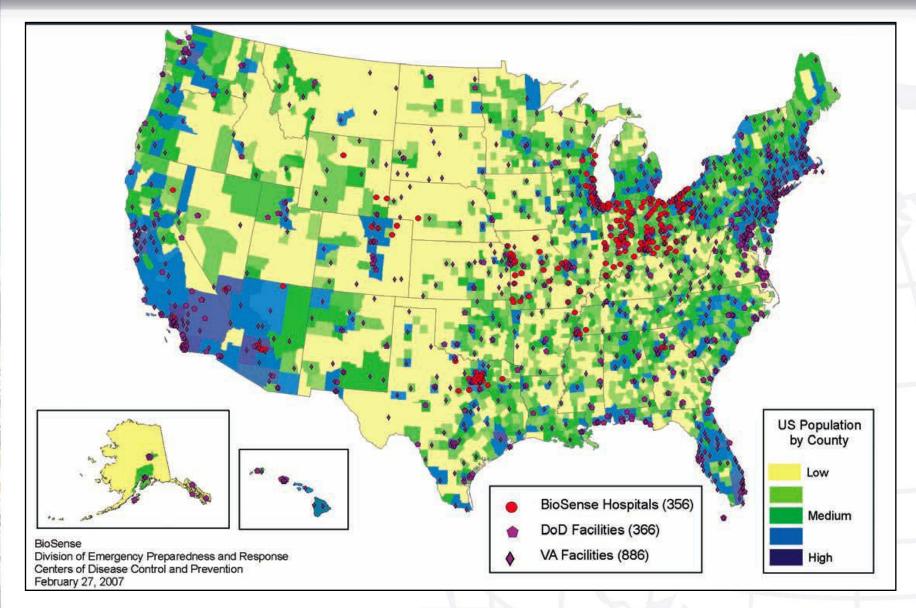
Third Annual Quantitative Methods in Defense and National Security Conference May 28, 2008

NAVAL POSTGRADUATE SCHOOL

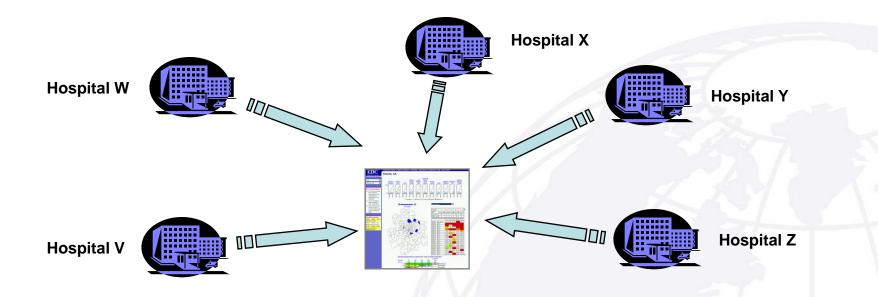
What is Biosurveillance?

- Homeland Security Presidential Directive HSPD-21 (October 18, 2007):
 - "The term 'biosurveillance' means the process of <u>active data-gathering</u> ... of biosphere data ... in order to achieve <u>early warning of health threats</u>, <u>early detection of health events</u>, and overall situational awareness of disease activity." [1]
 - "The Secretary of Health and Human Services shall establish an operational national epidemiologic surveillance system for human health..." [1]
- Epidemiologic surveillance:
 - "...surveillance using <u>health-related data</u> that <u>precede</u> <u>diagnosis</u> and signal a <u>sufficient probability of a case</u> or an outbreak to <u>warrant further public health response</u>." [2]
- [1] www.whitehouse.gov/news/releases/2007/10/20071018-10.html
- [2] CDC (<u>www.cdc.gov/epo/dphsi/syndromic.htm</u>, accessed 5/29/07)

An Existing System: BioSense



Think of It Like a Large System of Sensors



- Issue: False alarms a serious problem
 - "...most health monitors... learned to ignore alarms triggered by their system. This is due to the excessive false alarm rate that is typical of most systems - there is nearly an alarm every day!" [1]

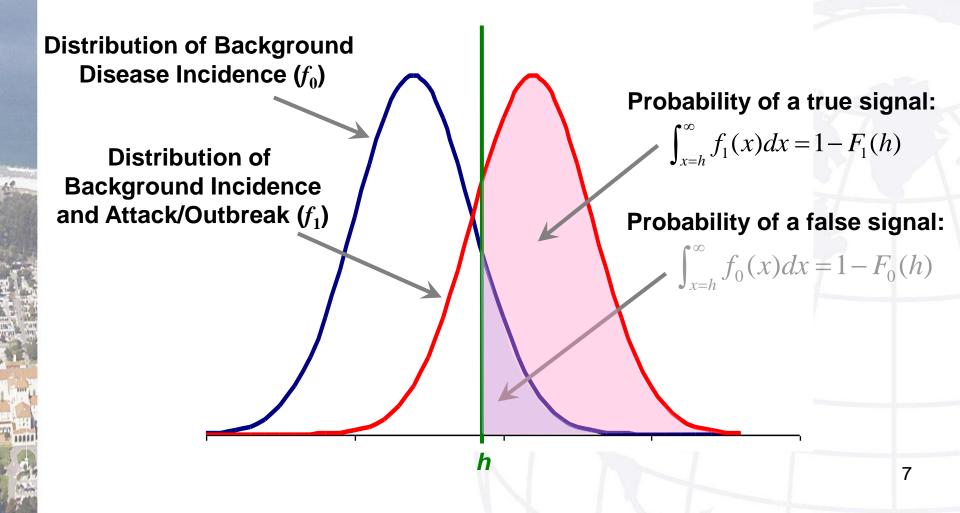
The Problem in Summary

- Goal: Early detection of disease outbreak and/or bioterrorism
- Issue: Currently detection thresholds set naively
 - Equally for all sensors
 - Ignores differential probability of attack
- Result:
 - High false alarm rates
 - Loss of credibility

Formal Description of the System

- Let X_{it} denote the output from sensor i at time t, i=1,...,n, t=1,2,...
 - Each sensor / location has a probability of outbreak / attack: $p_1,...,p_n,\sum_i p_i=1$
 - If no "event of interest" anywhere in the network, $X_{it} \sim F_0$ for all i and t
 - If an event of interest occurs at time τ , $X_{i\tau} \sim F_1$ for exactly one i
- A signal is generated at time τ^* when $X_{i\tau^*} \ge h_i$ for one or more i

Idea of Threshold Detection

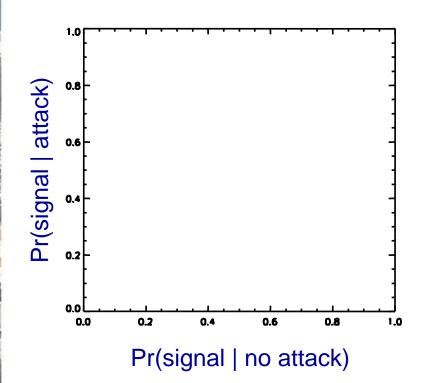


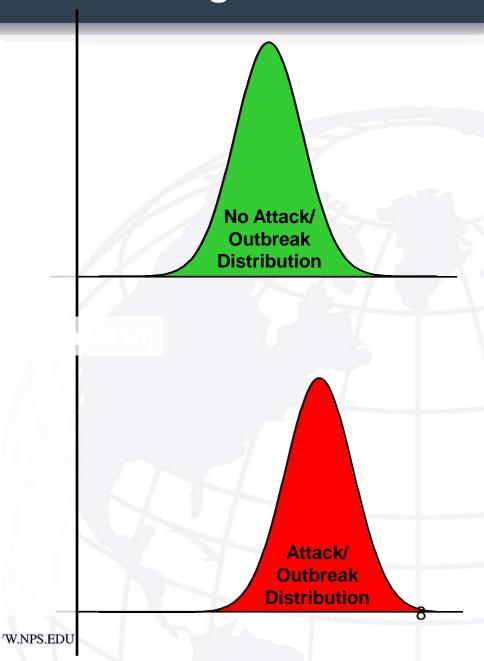
WWW.NPS.EDU

It's All About Choosing Thresholds

 For each sensor, choice of h is compromise between probability of true and false signals

ROC Curve





Mathematical Formulation of the Problem

It's simple to write out:

$$Pr(\text{detection}) = \sum_{i} Pr(\text{signal}|\text{attack}) Pr(\text{attack})$$
$$E(\# \text{ false signals}) = \sum_{i} Pr(\text{signal}|\text{no attack})$$

Express it as an NLP optimization problem:

$$\max_{\vec{h}} \sum_{i} [1 - F_1(h_i)] p_i$$
s.t.
$$\sum_{i} [1 - F_0(h_i)] \le \kappa$$

Some Assumptions

- Sensors are spatially independent
- Monitoring standardized residuals from an "adaptive regression" model
 - Model accounts for (and removes) systematic effects in the data
 - Result: Reasonable to assume F_0 =N(0,1)
- An attack will result in a 2-sigma increase in the mean of the residuals
 - Result: $F_1 = N(2,1)$
- Then, NLP is: $\min_{\vec{h}} \sum_{i} \Phi(h_i 2) p_i$ s.t. $\sum \Phi(h_i) > n \kappa$

Ten Sensor Example

		Common	Optimal	Common
Sensor i	p_i	Threshold #1	Threshold (h_i)	Threshold #2
1	0.797	2.189	1.068	1.310
2	0.064	2.189	3.602	1.310
3	0.056	2.189	3.732	1.310
4	0.048	2.189	3.915	1.310
5	0.013	2.189	4.656	1.310
6	0.006	2.189	4.736	1.310
7	0.006	2.189	4.736	1.310
8	0.005	2.189	4.755	1.310
9	0.003	2.189	4.773	1.310
10	0.002	2.189	4.791	1.310
	P_d	0.117	0.378	0.378
	$\sum \alpha_i$	0.143	0.143	0.951

Simplifying to a One-dimensional Optimization Problem

- System of n hospitals (sensors) means optimization has n free parameters
 - Hard for to solve for large systems
- Can simplify to one-parameter problem:
 - Theorem: For F_0 =N(0,1) and F_1 =N(γ ,1), the optimization simplifies to finding μ to satisfy

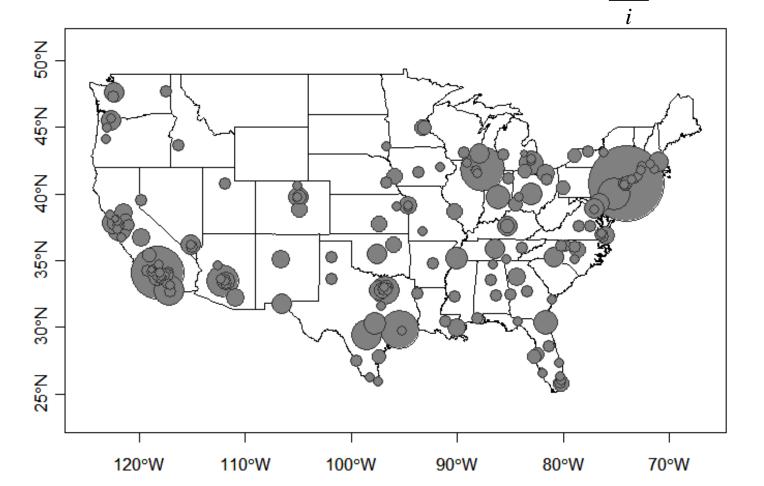
$$\sum_{i=1}^{n} \Phi\left(\mu - \frac{1}{\gamma} \ln(p_i)\right) = n - \kappa,$$

and the optimal thresholds are then

$$h_i = \mu - \frac{1}{\gamma} \ln(p_i).$$

Consider (Hypothetical) System to Monitor 200 Largest Cities in US

• Assume probability of attack is proportional to the population in a city: $p_i = m_i / \sum m_i$



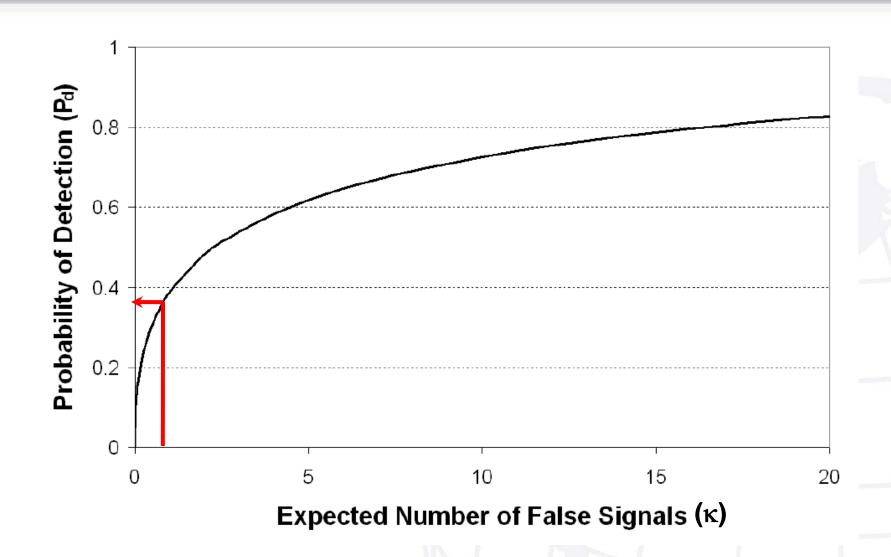
Optimal Solution for 200 Cities

- Assume
 - -2σ magnitude event
 - Constraint of 1 false signal system-wide / day

				Population	Pr(attack)	Threshold		Pr(signal no attack)
7	i	City	State	mi	p _i =m _i /M	hi	1-Ф(h _i -ō)	1-Φ(h _i)
8	10	New York city	New York	8,214,426	0.1101	1.07	0.825	0.143
9	2	Los Angeles	California	3,849,378	0.0516	1.45	0.710	0.074
10	3	Chicago	Illinois	2,833,321	0.0380	1.60	0.656	0.055
11	4	Houston	Texas	2,144,491	0.0287	1.74	0.603	0.041
12	5	Phoenix	Arizona	1,512,986	0.0203	1.91	0.535	0.028
13	6	Philadelphia	Pennsylvania	1,448,394	0.0194	1.93	0.526	0.027
14	7	San Antonio	Texas	1,296,682	0.0174	1.99	0.504	0.023
15	8	San Diego	California	1,256,951	0.0168	2.01	0.498	0.022
16	9	Dallas	Texas	1,232,940	0.0165	2.01	0.494	0.022
17	10	San Jose	California	929,936	0.0125	2.16	0.438	0.016

- Result: Pr(signal | attack) = 0.388
- Naïve result: Pr(signal | attack) = 0.283₁₄

P_d – False Alarm Trade-Off



• Optimal probability of detection for various choices of γ and κ

$$\mathbf{P}_d$$
 $\kappa = 1$
 $\kappa = 2$
 $\kappa = 3$
 $\kappa = 4$
 $\kappa = 5$
 $\gamma = 1$
 0.165
 0.228
 0.272
 0.307
 0.336

 $\gamma = 2$
 0.388
 0.481
 0.540
 0.583
 0.618

 $\gamma = 3$
 0.726
 0.801
 0.840
 0.866
 0.885

 $\gamma = 4$
 0.939
 0.964
 0.974
 0.980
 0.984

- Choice of κ depends on available resources
- Setting γ is subjective: what size mean increase important to detect?

Sensitivity Analyses

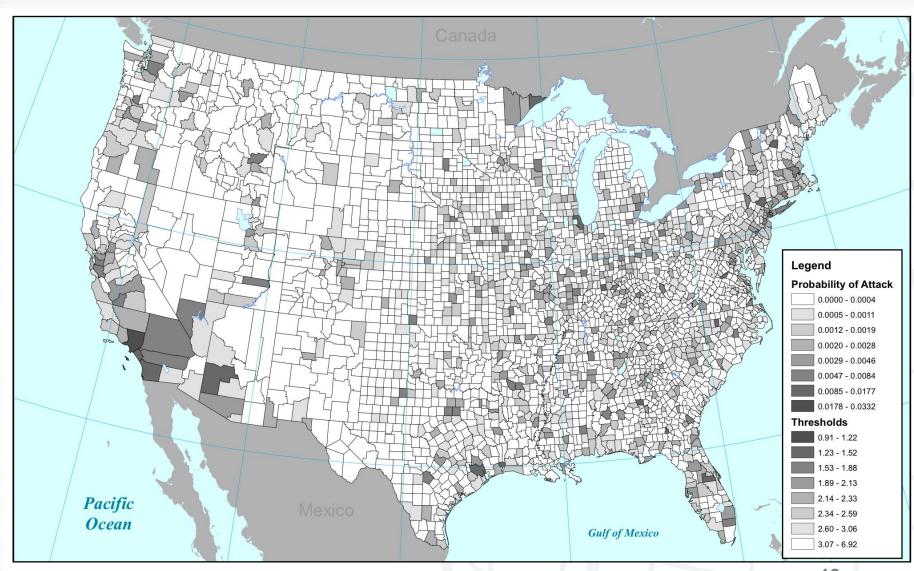
Optimal probability of detection

\mathbf{P}_d	$\kappa = 1$	$\kappa = 2$	$\kappa = 3$	$\kappa = 4$	$\kappa = 5$
$\gamma = 1$	0.165	0.228	0.272	0.307	0.336
$\gamma = 2$	0.388	0.481	0.540	0.583	0.618
$\gamma = 3$	0.726	0.801	0.840	0.866	0.885
$\gamma = 4$	0.939	0.964	0.272 0.540 0.840 0.974	0.980	0.984

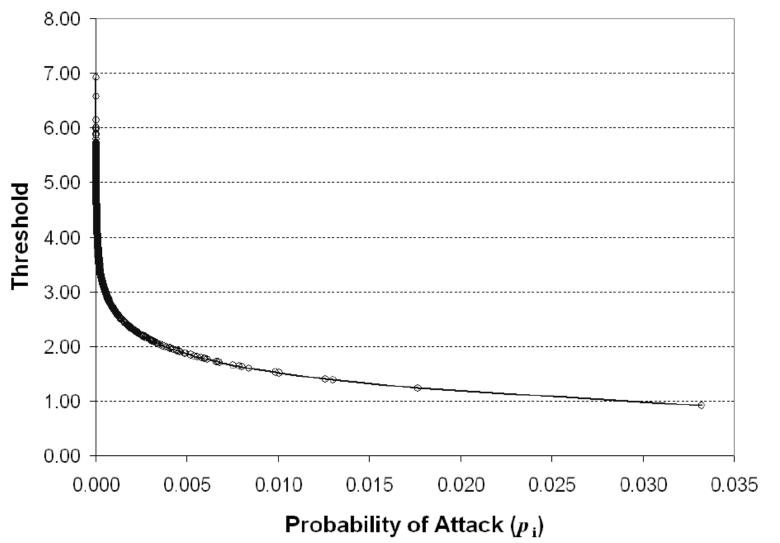
Actual probability of detection

	$\kappa = 1$				
Observed $\gamma = 1$	0.137	0.193	0.235	0.269	0.298
Observed $\gamma = 2$	0.388	0.481	0.540	0.583	0.618
Observed $\gamma = 3$	0.711	0.790	0.832	0.859	0.879
Observed $\gamma = 3$ Observed $\gamma = 4$	0.925	0.955	0.968	0.976	0.981

POSTGRADUATE Optimizing a County-level System SCHOOL



Thresholds as a Function of Probability of Attack



- BioSense and other biosurveillance systems' performance can be improved now at no cost
- Approach allows for customization
 - E.g., increase in probability of detection at individual location or add additional constraint to minimize false signals
- Applies to other sensor system applications:
 - Port surveillance, radiation/chem detection systems, etc.
- Details in Fricker and Banschbach (2007)

Future Research Directions

- Assess data fusion techniques for use when multiple sensors in each region
 - I.e., relax sensor (spatial) independence assumption
- Generalize from threshold detection methods to other methods that use historical information
 - I.e., relax temporal independence assumption

NAVAL POSTGRADUATE SCHOOL

Selected References

Background Information:

- Fricker, R.D., Jr., and H. Rolka, Protecting Against Biological Terrorism: Statistical Issues in Electronic Biosurveillance, *Chance*, **91**, pp. 4-13, 2006
- Fricker, R.D., Jr., Syndromic Surveillance, *Encyclopedia of Quantitative Risk Assessment* (to appear).

Selected Research:

- Fricker, R.D., Jr., and D. Banschbach, Optimizing a System of Threshold Detection Sensors, in submission to *Operations Research*.
- Fricker, R.D., Jr., and J.T. Chang, A Spatio-temporal Method for Real-time Biosurveillance, *Quality Engineering*, (to appear).
- Fricker, R.D., Jr., Knitt, M.C., and C.X. Hu, Comparing Directionally Sensitive MCUSUM and MEWMA Procedures with Application to Biosurveillance, Quality Engineering (to appear).
- Joner, M.D., Jr., Woodall, W.H., Reynolds, M.R., Jr., and R.D. Fricker, Jr., A One-Sided MEWMA Chart for Health Surveillance, Quality and Reliability Engineering International (to appear).
- Fricker, R.D., Jr., Hegler, B.L., and D.A Dunfee, Assessing the Performance of the Early Aberration Reporting System (EARS) Syndromic Surveillance Algorithms, Statistics in Medicine, 2008.
- Fricker, R.D., Jr., Directionally Sensitive Multivariate Statistical Process Control Methods with Application to Syndromic Surveillance, *Advances in Disease Surveillance*, **3**:1, 2007.